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Abstract 
 

This paper studied a novel codimension-two bifurcation combined by chaos and bifurca-

tions of periodic orbits of period-1 and subharmonic orbits of period-2 in a coupled Duffing sys-

tem with twisted frequency-response curves. A bifurcation line constructed by the saddle-node 

bifurcations of periodic orbits of period-1 tangentially intersects a bifurcation line constructed by 

the period doubling bifurcations of periodic orbits of period-1 at a codimension-two bifurcation 

point.  Meanwhile, a Hopf bifurcation line constructed by the Hopf bifurcations of subharmonic 

orbits of period-2 merges into the codimension-two bifurcation point and then disappears.  In 

this moment, chaos is generated simultaneously.  To analyze the phenomenon, the periodic or-

bits and the subharmonic orbits are detected by using the shooting method and the frequency 

responses are obtained through the harmonic balance method.  Besides, the stability of the ob-

tained orbits is performed using the Floquet theory. 
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1. Introduction 

Duffing equation is one of the common 

nonlinear differential equations with a har-

monic driving force and cubic nonlinearity.  

Saddle-node bifurcations that a stable peri-

odic orbit and an unstable periodic orbit are 

coalesced or generated each other are found 

in the Duffing equation.  The famous 

“jump phenomenon” in the Duffing equation 

results from the saddle-node bifurcation 

point.  The spring term of the Duffing 

equation is called “soft” if the signs of the 

linear spring term and cubic nonlinearity are 

opposite.  When the sign of the coefficient 

of the linear spring is the same as the sign of 

the cubic nonlinearity, the spring term is 

called a hard spring.  Normally, the 

nonlinearity bends the frequency-response 

curve of the system to the right for the hard 

springs.  The jump phenomenon occurs at 

the right of the primary resonance.  On the 

contrary, the frequency-response curve of 

the system is bended to the left and the jump 

phenomenon occurs in the left of the pri-

mary resonance for the soft springs.  

Sometimes, the frequency-response curve 

could be twisted in increasing the amplitude 

of the excitation.  Szemplińska-Stupnicka 

portrayed that the frequency-response curve 

for the Duffing equation with hard spring is 

bended to the right in small amplitude of the 

frequency response, then to the left side in 

large amplitude of the frequency response, 

finally back to the right [Szempliń-

ska-stupnicka. 1990]. 

This paper studied the nonlinear dy-

namics of the coupled Duffing equation with 

twisted frequency-response curves.  A 

novel codimension-two bifurcation com-

bined by chaos and bifurcations of periodic 

responses of period-1 and period-2 was ob-

served in a large periodic excitation.  With 

varying two parameters of the periodic ex-

citation, a bifurcation line constructed by the 

saddle-node bifurcations of periodic orbits 

of period-1 tangentially intersects a bifurca-

tion line constructed by the period doubling 

bifurcations of periodic orbits of period-1.  

Hsiao and Tung had studied the phenome-

non [Hsiao & Tung, 2002].  Meanwhile, a 

Hopf bifurcation line constructed by Hopf 

bifurcations of the subharmonic orbits of 

period-2 merges into the codimension-two 

bifurcation point and then disappears. In this 

moment, chaotic motions result from a Hopf 

bifurcation of a stable quasi-periodic orbit 

and another saddle-node bifurcation. A 

Manneville-Pomeau and a Ru-

elle-Takens-Newhouse routes to the chaotic 

trajectories are observed. The disappearance 

of the Hopf bifurcation of period-2 at the 

codimension-two bifurcation point induces 

chaos was not studied. 

Some approaches are applied to ana-

lyze the dynamics of the asymmetric 

nonautonomous system.  Periodic orbits of 

the system are detected by the shooting 

method [Kawakami, 1984].  Then the sta-

bility of the periodic orbits is performed 
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through Floquet theory [Friedmann & 

Hammond, 1977; Hsu, 1972; Nayfeh & 

Mook, 1979].  Based on the parametric 

continuation algorithm [Padmanabhan & 

Singh, 1995], bifurcation points and bifurca-

tion lines constructed by the bifurcation 

points are obtained with varying parameters 

of the nonlinear system.  Besides, fre-

quency responses are calculated via the 

harmonic balance method [Hayashi, 1964].  

The analysis results provide information 

about the novel dynamics of the coupled 

system. 

2. Detection of periodic orbits 
and subharmonic orbits 

A nonautonomous system in which a 

periodic excitation is involved is illustrated 

as, 

 

x& =F(x,ωt),                       (1) 
 

where ω denotes the frequency of the 

periodic excitation.  The shooting method 

[Kawakami, 1984] is an approach of detect-

ing periodic orbits of period-1 and subhar-

monic orbits of period-k of the system via a 

Poincaré section that stroboscopically sam-

ples a point on a trajectory of the system per 

period of the orbit.  The orbits correspond 

to fixed points on the section.  In the fol-

lowing, the fixed points are detected through 

a Poincaré map that is mapping of an inter-

section point of a trajectory with the Poin-

caré section onto the subsequent intersection 

point.  Selecting some values y0 as the 

staring point of the procedure of the 

detection corresponding to the time t=0, the 

Poincaré map G(y0) of the point y0 is 

obtained by numerically integrating Eq. (1) 

with a initial value y0 and computing the 

solution x(t,y0) at the period kT, 

 
G: nR → nR ; y0a G(y0)=x(kT, y0),     (2) 

 
where T is the period of the harmonic 

excitation.  A fixed point y* that corre-

sponds to a periodic orbit or a subharmonic 

orbit x  of Eq. (1) on the Poincaré section 

can be determined through zeros of the 

equation given below, 

 

G(y)=G(y)−y.                      (3) 

 

The orbit x  is accounted by numerically 

integrating Eq. (1) with the initial value y* 

among one period kT. 

The harmonic balance method [Hayashi, 

1964] is another approach to approximate 

the periodic orbits and subharmonic orbits of 

the system.  The periodic orbit of period-1 

or the subharmonic orbit of period-k is ap-

proximated by truncated trigonometric func-

tions, 

 

xl(t)=α0l+∑
=

+⋅⋅
N

i
lk

i
l

k
i

k
i t

1

)cos( βωα , l=1~n,  (4) 
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where xl is the l-th element of x and α0l, 

lk
iα , and lk

iβ  are n·(2N+1) unknown 

Fourier coefficients.  The value of the posi-

tive integer N depends on the required 

accuracy of the approximation.  

Substitution of Eq. (4) into Eq. (1) and 

balancing the coefficients of each of the 

harmonic terms produce n·(2N+1) nonlinear 

algebra equations in terms of the n·(2N+1) 

unknown Fourier coefficients.  Using those 

n·(2N+1) equations, the Fourier coefficients 

can be numerically calculated.  In this 

study, frequency responses of the system are 

obtained via the harmonic balance method. 

3. Stability of periodic orbits 
and subharmonic orbits 

This study obtains the stability of 

periodic orbits and subharmonic orbits via 

Floquet theory [Friedmann & Hammond, 

1977; Hsu, 1972; Nayfeh & Mook, 1979].  

Small perturbation to a periodic orbit or a 

subharmonic orbit determines the stability of 

the orbit by linearlizing the full equations of 

motion in relation to the orbit.  The result 

of the linearization is a linear, time variant 

differential equation. 

To perturb a orbit x~ , this study 

substitutes x= xx ~+  into Eq. (1).  x~  
represents small perturbation of the orbit x .  

The orbit x  was evaluated through the 

shooting method or the harmonic balance 

method which is described in the previous 

section.  Preserving only the linear terms of 

the equation, the perturbed system can be 

described as follows, 

 
x&~ =A(t) x~ ,                        (5) 

 

where A(t) is a matrix of time-periodic 

coefficients.  The transition matrix Tλ( x ), 

which determines the stability of the orbit 

x , is calculated numerically from the 

matrix A(t) with a Runge-Kutta scheme 

[Friedmann & Hammond, 1977].  The 

characteristic equation of Tλ( x ) is written as 

follows, 

 
χ( x ,λ,µ)=det(µI−Tλ( x ))=µn+a1·µn-1+…+an-1·

µ+an=0,                           (6) 

 

where I is an n×n identify matrix, µ is a 

eigenvalue of the matrix Tλ( x ), and λ is the 

system parameter.  According to the Flo-

quet theory, the orbit x  is stable if all 

eigenvalues of its transition matrix have 

modules less than unity; otherwise it is 

unstable.  A bifurcation occurs in the 

eigenvalues passing through the unit circle 

of the complex plane; i.e., one or more the 

eigenvalues of the transition matrix have 

unity modulus, 

 
µ=cosθ+j·sinθ, 0≤θ≤2π,               (7) 

 

where j= 1− .  Three types of instabilities 
are shown as follows: (i) θ=π, period dou-
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bling bifurcation occurs; (ii) θ=0, sad-

dle-node bifurcation, pitchfork bifurcation 

or transcritical bifurcation occurs; (iii) θ≠0 

and θ≠π, Hopf bifurcation occurs.  Substi-

tuting Eq. (7) into Eq. (6), bifurcation points 

are obtained by the detection methods and 

the parametric continuation algorithm 

[Padmanabhan & Singh, 1995]. 

 

4. Codimension-two bifurcation 
in a coupled Duffing euqtion 
with twisted frequency-response 
curves 

Consider a coupled asymmetric 

nonautonomous system that is illustrated as 

follows [Hsiao & Tung, 1999]: 

−−⋅−⋅+⋅−+++ )()]33([ 121
2
1

2
11

3
131111 xxxxxkxkxx axxccc &&&&& λµδδλ  

+−−+−+− )()(3)[()({ 12
2

21
3

123121 xxxxkxxk xxaa δδµ  

)cos(]}))((3 22
1221 trmxx exx ⋅=−− ωωδδ ,                             (8a) 

 

−−+−+−+ 3
123121122 )[()({)( xxkxxkxxx aaa &&&& λ  

0)]}()(3))((3 12
2

12
2

1212 =−−+−− xxxx xxxx δδδδ .                    (8b) 

 

Table 1 shows the parameters of Eqs. (8a) 

and (8b).  The equations of the coupled 

system are derived from a nonlinear dy-

namic absorber.  In the following, periodic 

orbits and subharmonic orbits for the equa-

tions are detected by using the shooting 

method and frequency responses of the sys-

tem are obtained through the harmonic bal-

ance method as described in Section II.  

Besides, the stability of the obtained orbits is 

performed using the Floquet theory as illus-

trated in Section III.  For the stability 

analysis, the bifurcation points can be ob-

tained and the bifurcation lines are con-

structed as the parameters are changed. 

Fig. 1(a) portrays a two-parametric bi-

furcation diagram on a parameter plane (ω,r).  

Bifurcation lines Lsn1,a, Lsn1,b, Lsn1,c, Lsn1,d, 

Lsn2,a, Lsn2,b, Lsn2,c, Lsn2,d, Lsn2,e, Lsn2,f, Lsn2,g, 
Lpd1,a, Lpd1,b, Lpd1,c, Lpd1,d, Lpd1,e, Lpd1,f, Lpd2,a, 
Lpd2,b, Lpd2,c, Lpd2,d, LH2,a, LH2,b, LH2,c, LH2,d, 

and LH2,e as shown in Fig. 1(a) are con-

structed by the saddle-node bifurcation 

points Psn1,a, Psn1,b, Psn1,c, Psn1,d, Psn2,a, Psn2,b, 

Psn2,c, Psn2,d, Psn2,e, Psn2,f, Psn2,g, the period 

doubling bifurcation points Ppd1,a, Ppd1,b, 
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Ppd1,c, Ppd1,d, Ppd1,e, Ppd1,f, Ppd2,a, Ppd2,b, Ppd2,c, 

Ppd2,d, and the Hopf bifurcation points PH2,a, 

PH2,b, PH2,c, PH2,d, PH2,e.  Fig. 1(b) is a 

blow-up of Fig. 1(a) around the point Pa.  

The period doubling bifurcation line Lpd1,b 

tangentially intersects the saddle-node bi-

furcation line Lsn1,b at a codimension-two 

bifurcation point Pa.  The Hopf bifurcation 

line LH2,d intersects the point Pa and then 

diapppears in the point.  Furthermore, Fig. 

2 schematically portrays the bifurcation set 

around the codimension-two bifurcation 

point Pa, including fixed points of period-1, 

sub-harmonic orbit of period-2, almost pe-

riodic orbits, and chaos on the bifurcation 

lines Lsn1,b and Lsn1,d and in Regions I to X.  

The details about Fig. 2 will be described in 

the last paragraphs of this section.  To de-

scribe transparently the previous phenome-

non, frequency responses along two dashdot 

lines L1 and L2 of Fig. 1(b) at r=0.263 and 

r=0.27 respectively, are illustrated in the 

following. 

Fig. 3 shows the frequency response of 

the system at r=0.263.  11α  and 12
1α  are 

the frequency-response curve of periodic 

orbits of period-1 and subharmonic orbits of 

period-2, respectively.  Fig. 3 also portrays 

that the frequency-response curve 11α  is 

twisted to the left and then to the right.  

The points Psn1,a, Psn1,b, and Psn1,d are the 

saddle-node bifurcation points of the peri-

odic orbits.  The points Ppd1,a, Ppd1,b, Ppd1,c, 

Ppd1,d, Ppd1,e, and Ppd1,f are the period dou-

bling bifurcation points of the periodic orbits.  

The subcritical period doubling bifurcation 

point Ppd1,a and the supercritical period dou-

bling bifurcation point Ppd1,b are at the left 

side of the saddle-node bifurcation point 

Psn1,b.  Subharmonic orbits of period-2 bi-

furcate from the period doubling bifurcation 

points Ppd1,a and Ppd1,b.  Furthermore, there 

are some bifurcations in the subharmonic 

orbits, such as the saddle-node bifurcation 

points Psn2,a, Psn2,b, Psn2,c, Psn2,d, and Psn2,e 

and the periodic bifurcation points Ppd2,a, 

Ppd2,b, Ppd2,c, and Ppd2,d.  Besides, the stable 

subharmonic orbits loss their stability at 

Hopf bifurcation points PH2,a, PH2,b, PH2,c, 

and PH2,d.  To classify the bifurcation points 

of the periodic orbits of period-1 and the 

points of the subharmonic orbits of period-2, 

the symbol ‘○‘ denotes the bifurcation 

points of the periodic orbits of the period-1 

and the symbol ‘●’ represents the bifurcation 

points of the subharmonic orbits of period-2. 
With increasing the values of the pa-

rameter r, The Hopf bifurcation points PH2,c 

and PH2,d runs away each other, and the pe-

riod doubling bifurcation point Ppd1,b is close 

to the saddle-node bifurcation point Psn1,b.  

Then the point Ppd1,b crosses the saddle-node 

bifurcation point Psn1,b and then moves to the 

unstable branch.  Meanwhile, the Hopf 

bifurcation point PH2,d coalesces into the 

period doubling bifurcation point Ppd1,b in 

the same time.  This cross results in the 



明道學術論壇，4(1)：13-28 (2008) 

19 

codimension-two bifurcation described in 

Fig. 1(b).  Fig. 4 illustrates the frequency 

response at r=0.27 after this cross.  The 

Hopf bifurcation point PH2,d have been dis-

appeared and the period doubling bifurca-

tion point Ppd1,b locates at the upper of the 

saddle-node bifurcation point Psn1,b. 

The disappearance of the bifurcation 

point PH2,d results in chaos.  Fig. 5(a) de-

scribes a bifurcation diagram and Fig. 5(b) 

portrays Lyapunov exponents of the system 

for r=0.267.  According to the investiga-

tion of Wolf et al. [Wolf et al., 1985], a mo-

tion with one or more positive Lyapunov 

exponents is defined to be chaotic.  Fig. 5(b) 

confirms that chaotic motions locate in an 

interval between ω≈0.97 and ω≈1.04.  A 

Ruelle-Takens-Newhouse route to chaos 

[Schuster, 1984] occurs at ω≈0.97.  A sta-

ble quasi-periodic orbit is translated to a 

chaotic trajectory through a Hopf bifurcation.  

Fig. 6 illustrates a chaotic attractor on the 

Poincaré section for ω=1.03.  In addition, 

the chaotic motions vanish for ω>1.04 due 

to the existence of stable periodic orbits that 

result from a saddle-node bifurcation point 

Psn1,d.  The phenomenon is called the 

Manneville-Pomeau route to chaos. 

By the aid of Figs. 3 to 6, the bifurca-

tion set around the codimension-two bifur-

cation point Pa can be clearly and com-

pletely described as follows.  Fig. 2 sche-

matically shows the bifurcation set around 

the codimension-two bifurcation point Pa.  

The point P1 denotes the fixed point at the 

left of the saddle-node bifurcation point 

Psn1,b.  The points P2, P3, and P4 display the 

fixed points between the bifurcation points 

Psn1,a and Psn1,b, Psn1,a and Psn1,c, Psn1,c and 

Psn1,d, respevtively.  The point P5 is the 

fixed point at the right of the bifurcation 

point Psn1,d.  In this figure, the period dou-

bling bifurcation line Lpd1,b tangentially in-

terests the saddle-node bifurcation line Lsn1,b 

at the point Pa. Meanwhile, the Hopf bifur-

cation lines LH2,d and L1
pd1,b interest the point 

Pa and then disappear. The bifurcation line 

Lsn1,d is the saddle-node bifurcation that does 

not interest the others.  The bifurcation 

lines divide the parameter plane (ω,r) 

around the codimension-two bifurcation 

point Pa into ten regions that are denoted as 

Regions I, II, III, IV, V, VI, VII, VIII, IX, 

and X, respectively.  Make a roundtrip near 

the codimension-two bifurcation point Pa, 

staring from Region I where there are three 

fixed points.  The upper and lower fixed 

points P3 and P5 are stable and the middle 

fixed point P4 is unstable.  Entering from 

Region I into Region II through the lower 

component L1
sn1,b of the saddle-node bifur-

cation line Lsn1,b yields two fixed points: a 

stable fixed point P1 and an unstable fixed 

point P2.  Then the stable fixed point P1 

losses its stability and simultaneously a sta-

ble subharmonic orbit of period-2 is gener-

ated in crossing the supercritical component 

L1
pd1,b of the period doubling bifurcation line 

Lpd1,b.  The same variation is occurs in 

crossing the period doubling bifurcation line 
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L1
pd1,b from Region X into Region IV.  If 

one continues the journey clockwise and 

reaches Region IV, the stable fixed point P5 

and the unstable fixed point P4 are coalesced 

each other at the saddle-node bifurcation 

line Lsn1,d.  Entering from Region IV into 

Region V through the Hopf bifurcation line 

LH2,d changes the stable subharmonic orbit of 

period-2 to be unstable and an almost peri-

odic orbit is generated in the same time.  

Continuing the journey clockwise and 

reaching Region VI, a stable manifold of the 

middle fixed point P2 losses its stability in 

crossing the subcritical component L2
pd1,b of 

the period doubling bifurcation line Lpd1,b 

and the unstable subharmonic orbit of pe-

riod-2 simultaneously disappeared.  Enter-

ing from Region VI in to Region VII, two 

unstable fixed points P1 and P2 are coalesced 

each other at the upper component L2
sn1,b of 

the saddle-node bifurcation line Lsn1,b.  In 

crossing the Hopf bifurcation line LHT, the 

stable almost periodic orbit losses its stabil-

ity and then simultaneously generates a cha-

otic orbit when entering from Region VII 

into Region VIII.  Meanwhile, the chaotic 

orbit is disappeared when the Hopf bifurca-

tion line LH2,d is generated from the codi-

mension-two bifurcation point Pa in Region 

IX.  Finally, returning to Region I through 

the saddle-node bifurcation line Lsn1,d yields 

two fixed points: a stable fixed point P5 and 

an unstable fixed point P4.  According to 

the bifurcation theory [Kuznetsov, 1995], 

the codimension-two bifurcation set is com-

pletely.  The supercritical period doubling 

bifurcation is changed to be subcritical when 

the period doubling bifurcation line Lpd1,b 

passes through the cosimension-two bifurca-

tion point Pa.  Meanwhile, the saddle-node 

bifurcation with the coalescence of a stable 

periodic orbit and an unstable periodic orbit 

is changed to the bifurcation with the coa-

lescence with two unstable periodic orbits.  

Besides, the Hopf bifurcation lines LH2,d and 

LHT are generated from the codimension-two 

point.  Chaos is extremely important in the 

codimension-two bifurcation. 

5. Conclusions 

This paper studied a novel codimen-

sion-two bifurcation combined by chaos and 

the bifurcations of the periodic orbits of pe-

riod-1 and the subharmonic orbits of pe-

riod-2 was observed in the coupled Duffing 

system with twisted frequency-response 

curves.  The bifurcation line constructed by 

the saddle-node bifurcations of the periodic 

orbits of period-1 tangentially intersects the 

bifurcation line constructed by the period 

doubling bifurcations of the periodic orbits 

of period-1 at the codimension-two bifurca-

tion point.  Besides, the Hopf bifurcation 

line merges into the point and then disap-

pears.  In this moment, the chaotic motions 

result from the Hopf bifurcation of the stable 

quasi-periodic orbit.  A Manne-

ville-Pomeau and a Ru-

elle-Takens-Newhouse routes to the chaotic 
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trajectories are observed.  The disappear-

ance of the Hopf bifurcation of subharmonic 

orbits of period-2 at the codimension-two 

bifurcation point induces chaos was not 

studied in another investigation. 

Some approaches were applied to ana-

lyze the dynamics of the asymmetric 

nonautonomous system.  The periodic or-

bits of the system are detected by the shoot-

ing method.  Then the stability of the peri-

odic orbits is performed through Floquet 

theory. Based on the parametric continuation 

algorithm, bifurcation points and bifurcation 

lines constructed by the bifurcation points 

are obtained with varying parameters of the 

nonlinear system.  Besides, frequency re-

sponses are calculated via the harmonic 

balance method.  The analysis results pro-

vide information about the novel dynamics 

of the coupled system. 
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(b) 

Fig. 1 (a) Bifurcation set for the codimension-two bifurcation.  (b) A blow-up of Fig.1(a) around 

the codimension-two bifurcation point Pa. 
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Fig. 2 A schematic diagram of the bifurcation set. 
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Fig. 3 Frequency response of the system at r=0.263. 

 

Fig. 4 Frequency response of the system at r=0.27. 
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        (a) 

 
  (b) 

Fig. 5 (a) Bifurcation diagram of the system for r=0.267. (b) Lyapunov exponents of the system. 
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Fig. 6 Chaotic attractor on the Poincaré section for r=0.267 and ω=1.03. 
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具彎曲頻率響應曲線偶合杜飛系統之新

共維度二分歧現象 

蕭永嘉 1*  賴廷裕 2 

1 明道大學資訊工程學系助理教授 
2 國立中央大學機械工程研究所博士班研究生 

摘   要 

本論文發現在某些參數下具彎曲頻率響應曲線之偶合杜飛系統在某些參數下產生新共

維度二分歧現象。此現象由週期加倍分歧、鞍點－節點分歧、霍伯夫分歧及混沌運動所組

成。週期運動之鞍點－節點分歧線與週期加倍分歧線相交於一共維度二分歧點，而次簡協

運動之霍伯夫分歧線與此點相交後消失並同時產生混沌運動。為分析上述現象，文中應用

發射法求得系統之週期解及次簡諧解，而頻譜響應圖則以簡諧平衡法求之。其穩定性分析

則利用 Floquet 理論求得。 

關鍵字：分歧，共維度二，混沌，杜飛系統，次簡諧運動 


