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Abstract

This paper studied a novel codimension-two bifurcation combined by chaos and bifurca-
tions of periodic orbits of period-1 and subharmonic orbits of period-2 in a coupled Duffing sys-
tem with twisted frequency-response curves. A bifurcation line constructed by the saddle-node
bifurcations of periodic orbits of period-1 tangentially intersects a bifurcation line constructed by
the period doubling bifurcations of periodic orbits of period-1 at a codimension-two bifurcation
point. Meanwhile, a Hopf bifurcation line constructed by the Hopf bifurcations of subharmonic
orbits of period-2 merges into the codimension-two bifurcation point and then disappears. In
this moment, chaos is generated simultaneously. To analyze the phenomenon, the periodic or-
bits and the subharmonic orbits are detected by using the shooting method and the frequency
responses are obtained through the harmonic balance method. Besides, the stability of the ob-

tained orbits is performed using the Floquet theory.
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1. Introduction

Duffing equation is one of the common
nonlinear differential equations with a har-
monic driving force and cubic nonlinearity.
Saddle-node bifurcations that a stable peri-
odic orbit and an unstable periodic orbit are
coalesced or generated each other are found
in the Duffing equation. The famous
“jump phenomenon” in the Duffing equation
results from the saddle-node bifurcation
point. The spring term of the Duffing
equation is called “soft” if the signs of the
linear spring term and cubic nonlinearity are
opposite. When the sign of the coefficient
of the linear spring is the same as the sign of
the cubic nonlinearity, the spring term is
called a hard spring. Normally, the
nonlinearity bends the frequency-response
curve of the system to the right for the hard
springs. The jump phenomenon occurs at
the right of the primary resonance. On the
contrary, the frequency-response curve of
the system is bended to the left and the jump
phenomenon occurs in the left of the pri-
mary

Sometimes, the frequency-response curve

resonance for the soft springs.
could be twisted in increasing the amplitude
of the excitation. Szemplinska-Stupnicka
portrayed that the frequency-response curve
for the Duffing equation with hard spring is
bended to the right in small amplitude of the
frequency response, then to the left side in
large amplitude of the frequency response,
finally back to the

right [Szemplin-
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ska-stupnicka. 1990].

This paper studied the nonlinear dy-
namics of the coupled Duffing equation with
twisted frequency-response curves. A
novel codimension-two bifurcation com-
bined by chaos and bifurcations of periodic
responses of period-1 and period-2 was ob-
served in a large periodic excitation. With
varying two parameters of the periodic ex-
citation, a bifurcation line constructed by the
saddle-node bifurcations of periodic orbits
of period-1 tangentially intersects a bifurca-
tion line constructed by the period doubling
bifurcations of periodic orbits of period-1.
Hsiao and Tung had studied the phenome-
non [Hsiao & Tung, 2002]. Meanwhile, a
Hopf bifurcation line constructed by Hopf
bifurcations of the subharmonic orbits of
period-2 merges into the codimension-two
bifurcation point and then disappears. In this
moment, chaotic motions result from a Hopf
bifurcation of a stable quasi-periodic orbit
bifurcation. A

Ru-

and another saddle-node
Manneville-Pomeau and a
elle-Takens-Newhouse routes to the chaotic
trajectories are observed. The disappearance
of the Hopf bifurcation of period-2 at the
codimension-two bifurcation point induces
chaos was not studied.

Some approaches are applied to ana-
lyze the dynamics of the asymmetric
nonautonomous system. Periodic orbits of
the system are detected by the shooting
method [Kawakami, 1984]. Then the sta-

bility of the periodic orbits is performed
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through Floquet
Hammond, 1977; Hsu, 1972; Nayfeh &
Mook, 1979].

continuation algorithm [Padmanabhan &

theory [Friedmann &

Based on the parametric

Singh, 1995], bifurcation points and bifurca-
tion lines constructed by the bifurcation
points are obtained with varying parameters
of the nonlinear system. Besides, fre-
quency responses are calculated via the
harmonic balance method [Hayashi, 1964].
The analysis results provide information
about the novel dynamics of the coupled

system.

2. Detection of periodic orbits
and subharmonic orbits

A nonautonomous system in which a
periodic excitation is involved is illustrated
as,

X =F(x,0?), (1
where o denotes the frequency of the
periodic excitation. The shooting method
[Kawakami, 1984] is an approach of detect-
ing periodic orbits of period-1 and subhar-
monic orbits of period-k of the system via a
Poincaré section that stroboscopically sam-
ples a point on a trajectory of the system per
period of the orbit. The orbits correspond
to fixed points on the section. In the fol-
lowing, the fixed points are detected through

a Poincaré map that is mapping of an inter-

section point of a trajectory with the Poin-
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caré section onto the subsequent intersection
point.  Selecting some values y, as the
staring point of the procedure of the
detection corresponding to the time /=0, the
Poincaré map G(y,) of the point y, is
obtained by numerically integrating Eq. (1)
with a initial value y, and computing the
solution x(z,y,) at the period £T,
G:R"—>R"; yo> Go)=x(kT, yo),  (2)
where T is the period of the harmonic
excitation. A fixed point y* that corre-
sponds to a periodic orbit or a subharmonic
orbit X of Eq. (1) on the Poincaré section
can be determined through zeros of the
equation given below,
GO)=G)y. 3)
The orbit X is accounted by numerically
integrating Eq. (1) with the initial value y"
among one period kT.

The harmonic balance method [Hayashi,
1964] is another approach to approximate
the periodic orbits and subharmonic orbits of
the system. The periodic orbit of period-1
or the subharmonic orbit of period-k is ap-
proximated by truncated trigonometric func-

tions,

X/(t):aoz"‘ZaJ cos(+-@-t+f3,)> =l~n, (4)
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where x; is the /-th element of x and oy,
a%’ , and ﬂi’ are n'(2N+1) unknown
Fourier coefficients. The value of the posi-
tive integer N depends on the required
accuracy of the approximation.
Substitution of Eq. (4) into Eq. (1) and
balancing the coefficients of each of the
harmonic terms produce n-(2N+1) nonlinear
algebra equations in terms of the n-(2N+1)
unknown Fourier coefficients. Using those
n-(2N+1) equations, the Fourier coefficients
can be numerically calculated. In this
study, frequency responses of the system are

obtained via the harmonic balance method.

3. Stability of periodic orbits
and subharmonic orbits

This study obtains the stability of
periodic orbits and subharmonic orbits via
Floquet theory [Friedmann & Hammond,
1977; Hsu, 1972; Nayfeh & Mook, 1979].
Small perturbation to a periodic orbit or a
subharmonic orbit determines the stability of
the orbit by linearlizing the full equations of
motion in relation to the orbit. The result
of the linearization is a linear, time variant
differential equation.

To perturb a orbit X , this study

substitutes x= X+ X into Eq. (1). X

represents small perturbation of the orbit Xx.

The orbit x was evaluated through the
shooting method or the harmonic balance

method which is described in the previous
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section. Preserving only the linear terms of
the equation, the perturbed system can be

described as follows,

X=A(DX, )
where A(f) is a matrix of time-periodic
coefficients. The transition matrix T;( x),
which determines the stability of the orbit
x , is calculated numerically from the
matrix A(f) with a Runge-Kutta scheme
1977].  The

characteristic equation of 7;( x ) is written as

[Friedmann & Hammond,
follows,

2 X Apy=det(ul-Ty( X ))=u"+ay 1™+ +an-
pta,=0, (6)
where / is an nxn identify matrix, u is a
eigenvalue of the matrix T,( X ), and A is the
system parameter. According to the Flo-
quet theory, the orbit x is stable if all
eigenvalues of its transition matrix have
modules less than unity; otherwise it is
unstable. A bifurcation occurs in the
eigenvalues passing through the unit circle
of the complex plane; i.e., one or more the
eigenvalues of the transition matrix have
unity modulus,

u=cos@j-sinf, 0<62 , @)
where j:\/—_l . Three types of instabilities

are shown as follows: (i) &=rx, period dou-
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bling bifurcation occurs; (ii)) 6=0, sad-
dle-node bifurcation, pitchfork bifurcation
or transcritical bifurcation occurs; (iii) 620
and @#r, Hopf bifurcation occurs. Substi-
tuting Eq. (7) into Eq. (6), bifurcation points
are obtained by the detection methods and
the

parametric  continuation

[Padmanabhan & Singh, 1995].

algorithm

¥+ Ax, + [k x, + kg (xl3 -36,,
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4. Codimension-two bifurcation
in a coupled Duffing euqtion
with twisted frequency-response
curves
Consider a coupled asymmetric

nonautonomous system that is illustrated as
follows [Hsiao & Tung, 1999]:

'x12 +35x21 X)) = A, (%, = X)) -

Mk (xy = x)) + k5 [(x, _361)3 +3(0, _5x2)2(x2 —x)+

3(6, —0,,)(x,

-x)’ 1} =mr@’ cos(w-t),

(8a)

Xy + 4,00 =)+ {k, Oy —x) + [0 —x,) =

3(5)62 - 5){1 )(x2 - ‘xl )2 + 3(5):2

Table 1 shows the parameters of Egs. (8a)
and (8b).

system are derived from a nonlinear dy-

The equations of the coupled
namic absorber. In the following, periodic
orbits and subharmonic orbits for the equa-
tions are detected by using the shooting
method and frequency responses of the sys-
tem are obtained through the harmonic bal-
ance method as described in Section II
Besides, the stability of the obtained orbits is
performed using the Floquet theory as illus-
Section III.

trated in For the stability

analysis, the bifurcation points can be ob-

_§x1)2('x2 -x)]}=0.
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(8b)

tained and the bifurcation lines are con-
structed as the parameters are changed.

Fig. 1(a) portrays a two-parametric bi-
furcation diagram on a parameter plane (w,r).
Bifurcation lines L4 Lsuips Lontes Lsntds
Loas Laops Lones Lsmoas Lones Lo Linog
Lyaras Lpares Lpar s Lpaz,as

Lpdl,as Lpdl,bs Lpdl,c:

Loy Lpares Lparas Linas Lings Line, Lina,
and L;p, as shown in Fig. 1(a) are con-
saddle-node

pOintS Psnl,aa Psnl,b; Pml,c: Psnl,da Psn2,as Psn2,b7

structed by the bifurcation
PmZ,c: Psn2,d7 Psn2,e; Psn2,f; Pan,g; the periOd

doubling bifurcation points Puiis Ppaip
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Prares Ppat gy Ppares Ppat s Pparas Ppaops Ppar.es
P,as.4, and the Hopf bifurcation points Py,
Py, Pmes Prng, Prne. Fig. 1(b) is a
blow-up of Fig. 1(a) around the point P,.
The period doubling bifurcation line L4 4
tangentially intersects the saddle-node bi-
furcation line L, at a codimension-two
bifurcation point P,. The Hopf bifurcation
line Ly, intersects the point P, and then
diapppears in the point. Furthermore, Fig.
2 schematically portrays the bifurcation set
around the codimension-two bifurcation
point P,, including fixed points of period-1,
sub-harmonic orbit of period-2, almost pe-
riodic orbits, and chaos on the bifurcation
lines Ly, and Ly, 4 and in Regions I to X.
The details about Fig. 2 will be described in
the last paragraphs of this section. To de-
scribe transparently the previous phenome-
non, frequency responses along two dashdot
lines L, and L, of Fig. 1(b) at »=0.263 and
r=0.27 respectively, are illustrated in the

following.

Fig. 3 shows the frequency response of
the system at 7=0.263. &, and 05%1 are
the frequency-response curve of periodic
orbits of period-1 and subharmonic orbits of
period-2, respectively. Fig. 3 also portrays
that the frequency-response curve &, is
twisted to the left and then to the right.
The points Py,; 4, Psurp, and Py, , are the
saddle-node bifurcation points of the peri-
odic orbits.

The pOintS de!,a; de!,h; de!,m

Ppardas Ppaie, and P,y ¢ are the period dou-
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bling bifurcation points of the periodic orbits.
The subcritical period doubling bifurcation
point Py, and the supercritical period dou-
bling bifurcation point P,y ; are at the left
side of the saddle-node bifurcation point
P15 Subharmonic orbits of period-2 bi-
furcate from the period doubling bifurcation
points P,gi, and Ppy . Furthermore, there
are some bifurcations in the subharmonic
orbits, such as the saddle-node bifurcation
points Pying, Ponp, Pones Poing, and Pgp,
and the periodic bifurcation points Py,
Poirpy Ppire, and P,y Besides, the stable
subharmonic orbits loss their stability at
Hopf bifurcation points Pina Props Proe
and Pyp 4. To classify the bifurcation points
of the periodic orbits of period-1 and the

points of the subharmonic orbits of period-2,

[P 3

o¢ denotes the bifurcation

the symbol
points of the periodic orbits of the period-1
and the symbol ‘e’ represents the bifurcation
points of the subharmonic orbits of period-2.

With increasing the values of the pa-
rameter », The Hopf bifurcation points P, .
and P, runs away each other, and the pe-
riod doubling bifurcation point P,y is close
to the saddle-node bifurcation point Py, .
Then the point P, 5 crosses the saddle-node
bifurcation point Py, , and then moves to the
unstable branch. Meanwhile, the Hopf
bifurcation point P,, coalesces into the
period doubling bifurcation point P,y , in

the same time. This cross results in the
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codimension-two Dbifurcation described in
Fig. 1(b).

response at 7=0.27 after this cross.

Fig. 4 illustrates the frequency
The
Hopf bifurcation point Py, , have been dis-
appeared and the period doubling bifurca-
tion point P,; , locates at the upper of the
saddle-node bifurcation point P, .

The disappearance of the bifurcation
point Py, results in chaos. Fig. 5(a) de-
scribes a bifurcation diagram and Fig. 5(b)
portrays Lyapunov exponents of the system

for =0.267.
tion of Wolf et al. [Wolf et al., 1985], a mo-

According to the investiga-

tion with one or more positive Lyapunov
Fig. 5(b)

confirms that chaotic motions locate in an

exponents is defined to be chaotic.

interval between @<0.97 and w=1.04. A
Ruelle-Takens-Newhouse route to chaos
[Schuster, 1984] occurs at @w=0.97. A sta-
ble quasi-periodic orbit is translated to a
chaotic trajectory through a Hopf bifurcation.
Fig. 6 illustrates a chaotic attractor on the
Poincaré section for w=1.03. In addition,
the chaotic motions vanish for @>1.04 due
to the existence of stable periodic orbits that
result from a saddle-node bifurcation point
P14 The phenomenon is called the
Manneville-Pomeau route to chaos.

By the aid of Figs. 3 to 6, the bifurca-
tion set around the codimension-two bifur-
cation point P, can be clearly and com-
pletely described as follows. Fig. 2 sche-
matically shows the bifurcation set around
the codimension-two bifurcation point P,.

The point P, denotes the fixed point at the

+ 4(1) : 13-28 (2008)
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left of the saddle-node bifurcation point
Pml,b-
fixed points between the bifurcation points

Pxnl,a and Psnl,ba Psnl,a and Psnl,cn Psnl,c and

The points P,, P;, and P, display the

P14, respevtively. The point Ps is the
fixed point at the right of the bifurcation
point Py,; 4. In this figure, the period dou-
bling bifurcation line L,q, tangentially in-
terests the saddle-node bifurcation line Ly,
at the point P,. Meanwhile, the Hopf bifur-
cation lines L;p 4 and Llpd“, interest the point
P, and then disappear. The bifurcation line
Ly 4 1s the saddle-node bifurcation that does
not interest the others. The bifurcation
lines divide the parameter plane (w,r)
around the codimension-two bifurcation
point P, into ten regions that are denoted as
Regions 1, II, III, IV, V, VI, VII, VIII, IX,
and X, respectively. Make a roundtrip near
the codimension-two bifurcation point P,,
staring from Region I where there are three
fixed points. The upper and lower fixed
points P; and Ps are stable and the middle
fixed point P4 is unstable. Entering from
Region I into Region II through the lower
component Lls,,l,,, of the saddle-node bifur-
cation line L, , yields two fixed points: a
stable fixed point P; and an unstable fixed
point P,. Then the stable fixed point P,
losses its stability and simultaneously a sta-
ble subharmonic orbit of period-2 is gener-
ated in crossing the supercritical component
Llpdl,b of the period doubling bifurcation line
Lynp.  The same variation is occurs in

crossing the period doubling bifurcation line
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Llpdl,,, from Region X into Region IV. If
one continues the journey clockwise and
reaches Region IV, the stable fixed point Ps
and the unstable fixed point P, are coalesced
each other at the saddle-node bifurcation
line Ly, 4 Entering from Region IV into
Region V through the Hopf bifurcation line
Ly 4 changes the stable subharmonic orbit of
period-2 to be unstable and an almost peri-
odic orbit is generated in the same time.
Continuing the journey clockwise and
reaching Region VI, a stable manifold of the
middle fixed point P, losses its stability in
crossing the subcritical component szdl,[z of
the period doubling bifurcation line L,q s
and the unstable subharmonic orbit of pe-
riod-2 simultaneously disappeared. Enter-
ing from Region VI in to Region VII, two
unstable fixed points P, and P, are coalesced
each other at the upper component Lz_ml,,, of
the saddle-node bifurcation line Ly, In
crossing the Hopf bifurcation line Ly, the
stable almost periodic orbit losses its stabil-
ity and then simultaneously generates a cha-
otic orbit when entering from Region VII
into Region VIII. Meanwhile, the chaotic
orbit is disappeared when the Hopf bifurca-
tion line L;,, is generated from the codi-
mension-two bifurcation point Pa in Region
IX. Finally, returning to Region I through
the saddle-node bifurcation line Ly, yields
two fixed points: a stable fixed point Ps and
an unstable fixed point P,. According to

the bifurcation theory [Kuznetsov, 1995],

the codimension-two bifurcation set is com-

20

pletely. The supercritical period doubling
bifurcation is changed to be subcritical when
the period doubling bifurcation line L,q s
passes through the cosimension-two bifurca-
tion point P,. Meanwhile, the saddle-node
bifurcation with the coalescence of a stable
periodic orbit and an unstable periodic orbit
is changed to the bifurcation with the coa-
lescence with two unstable periodic orbits.
Besides, the Hopf bifurcation lines L, and
Ly are generated from the codimension-two
point. Chaos is extremely important in the

codimension-two bifurcation.

5. Conclusions

This paper studied a novel codimen-
sion-two bifurcation combined by chaos and
the bifurcations of the periodic orbits of pe-
riod-1 and the subharmonic orbits of pe-
riod-2 was observed in the coupled Duffing
system with twisted frequency-response
curves. The bifurcation line constructed by
the saddle-node bifurcations of the periodic
orbits of period-1 tangentially intersects the
bifurcation line constructed by the period
doubling bifurcations of the periodic orbits
of period-1 at the codimension-two bifurca-
tion point. Besides, the Hopf bifurcation
line merges into the point and then disap-
pears. In this moment, the chaotic motions
result from the Hopf bifurcation of the stable
A Manne-

Ru-

quasi-periodic  orbit.

ville-Pomeau and a

elle-Takens-Newhouse routes to the chaotic
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trajectories are observed. The disappear-
ance of the Hopf bifurcation of subharmonic
orbits of period-2 at the codimension-two
bifurcation point induces chaos was not
studied in another investigation.

Some approaches were applied to ana-
lyze the dynamics of the asymmetric
nonautonomous system. The periodic or-
bits of the system are detected by the shoot-
ing method. Then the stability of the peri-
odic orbits is performed through Floquet
theory. Based on the parametric continuation
algorithm, bifurcation points and bifurcation
lines constructed by the bifurcation points
are obtained with varying parameters of the
nonlinear system. Besides, frequency re-
sponses are calculated via the harmonic
balance method. The analysis results pro-
vide information about the novel dynamics

of the coupled system.
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Table 1 System parameters of Egs. (8a) and (8b).

Parameters Values

n 0.769
Ae 0.03209
ka1 0.0708
k3 40.31473
Oy 0.06917
Aa 0.0025
ka 0.09208
ks 52.43516
O 0.11726
m, 0.00992

0.40 —

0.35 —

0.30 —

0.25 —

0.20 — }

r 7 me,/ o

0.15 —

0.10 —

0.05 — -

0.00 | ‘ - | | |

0.80 0.90 1.10 1.30 1.40

(a)

22



0.268

0.266

0.264

Lpdl,b

0.9970 0.9980 0.9990

(b)

Fig. 1 (a) Bifurcation set for the codimension-two bifurcation. (b) A blow-up of Fig.1(a) around

the codimension-two bifurcation point P,.
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Fig. 2 A schematic diagram of the bifurcation set.
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Fig. 4 Frequency response of the system at »=0.27.
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Fig. 5 (a) Bifurcation diagram of the system for 7=0.267. (b) Lyapunov exponents of the system.
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Fig. 6 Chaotic attractor on the Poincaré section for 7=0.267 and w=1.03.
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